Data collection	
Siemens P4 diffractometer	$R_{\text{int}} = 0.041$
$\theta/2\theta$ scans	$\theta_{\rm max} = 27.51^{\circ}$
Absorption correction:	$h = -1 \rightarrow 13$
empirical ψ scans	$k = -14 \rightarrow 13$
(XSCANS; Siemens, 1994)	$l = -23 \rightarrow 23$
$T_{\rm min} = 0.691, T_{\rm max} = 0.892$	3 standard reflections
10659 measured reflections	every 97 reflections
9197 independent reflections	intensity decay: <3%
4804 reflections with	
$I > 2\sigma(I)$	

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = -0.001$
$R[F^2 > 2\sigma(F^2)] = 0.048$	$\Delta \rho_{\rm max} = 1.03 {\rm e}{\rm \AA}^{-3}$ (0.93 Å
$wR(F^2) = 0.121$	from Mo2)
S = 0.810	$\Delta \rho_{\rm min} = -0.77 \ {\rm e} \ {\rm \AA}^{-3}$
9197 reflections	Extinction correction: none
577 parameters	Scattering factors from
All H atoms refined	International Tables for
$w = 1/[\sigma^2(F_o^2) + (0.0538P)^2]$	Crystallography (Vol. C)
where $P = (F_o^2 + 2F_c^2)/3$	

Table 1. Selected geometric parameters (Å, °)

Mo1-C19	2.017 (5)	P2—C33	1.825 (5)
Mol-C20	2.024 (5)	P2—C27	1.838 (5)
Mol—Pl	2.4900 (12)	P2C21	1.844 (5)
Mo2-C40	2.017 (5)	CII—C4	1.743 (5)
Mo2-C39	2.029 (6)	Cl2C10	1.732 (5)
Mo2-P2	2.4760 (12)	Cl3—C16	1.746 (5)
P1-C13	1.836 (4)	C14C24	1.739 (6)
P1—C7	1.838 (5)	CI5-C30	1.750 (5)
P1—C1	1.843 (5)	Cl6—C36	1.733 (5)
C19—Mo1—C20	90.6 (2)	C7-P1-Mol	111.85 (15)
C19—Mo1—P1	89.45 (14)	C1-P1-Mol	116.71 (15)
C20-Mo1-P1	87.15 (13)	C33—P2—C27	103.9 (2)
C40-Mo2-C39	89.8 (2)	C33—P2—C21	103.0 (2)
C40—Mo2—P2	88.86 (13)	C27—P2—C21	97.8 (2)
C39-Mo2-P2	87.00 (14)	C33-P2-Mo2	110.96 (14)
CI3—PI—C7	102.3 (2)	C27—P2—Mo2	118.6 (2)
C13—P1—C1	100.5 (2)	C21—P2—Mo2	120.3 (2)
C7—P1—C1	103.8 (2)	O3-C39-Mo2	177.5 (5)
C13-P1-Mol	119.5 (2)	O4C40-Mo2	179.4 (5)

The structure was solved by direct methods and refined by full-matrix least-squares techniques. All the H atoms were located from difference Fourier maps and refined isotropically. Computer program *PARST* (Nardelli, 1983) was used for geometrical calculations.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXL93.

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grants under Nos. 09-02-05-6034 and 09-02-05-6024. KR thanks Universiti Sains Malaysia for a Visiting Post Doctoral Research Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: MU1322). Services for accessing these data are described at the back of the journal.

References

- Alyea, E. C., Ferguson, G. & Somogyvari, A. (1983). Organometallics, 2, 668-674.
- Cotton, F. A., Darensbourg, D. J. & Ilsley, W. H. (1981). Inorg. Chem. 20, 578-583.
- Cotton, F. A., Darensbourg, D. J. & Klein, S. (1982). Inorg. Chem. 21, 294–299.
- Daly, J. J. (1964). J. Chem. Soc. A. pp. 3799-3810.
- Dunne, B. J. & Orpen, A. G. (1991). Acta Cryst. C47, 345-347.
- Mak, T. C. W. (1984). Z. Kristallogr. 166, 277-281.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Shawkataly, O. B., Singh, J., Sivakumar, K. & Fun, H. K. (1996). Acta Cryst. C52, 2243-2245.
- Sheldrick, G. M. (1990). SHELXTLIPC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994). XSCANS. X-ray Single Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1997). C53, 1545-1547

Tetracarbonyl[2-(diphenylphosphino)aniline-*N*,*P*]molybdenum(0)

LUTZ DAHLENBURG, KONRAD HERBST AND GÜNTER LIEHR

Institut für Anorganische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany. E-mail: dahlbg@anorganik.chemie.uni-erlangen.de

(Received 15 April 1997; accepted 19 May 1997)

Abstract

In the title complex, $[Mo(CO)_4(C_{18}H_{16}NP)]$, coordination about the central metal is distorted octahedral. The five-membered MoNC₂P chelate ring has an 'envelope' conformation with the Mo atom deviating from the plane defined by the four non-metal atoms.

Comment

The title compound, (I), $[Mo(CO)_4\{(C_6H_5)_2PC_6H_4-NH_2\}]$, was prepared as part of a series of our continuing studies on transition metal derivatives containing NH, OH and SH functional PR_3 ligands (Dahlenburg, Herbst & Kühnlein, 1997; Dahlenburg & Kühnlein, 1997; Dahlenburg & Herbst, 1997; Dahlenburg, Herbst & Liehr, 1997). This crystal structure was determined in order to make comparisons with related tetracarbonylmolybdenum complexes bearing bidentate ligands with NH₂ and P(C₆H₅)₂ donor groups.

As indicated in Fig. 1, the overall molecular geometry about the central Mo atom of (I) corresponds to distorted octahedral. The $(C_6H_5)_2PC_6H_4NH_2$ ligand acts as an N, P-bidentate ligand, giving rise to a fivemembered chelate structure. The chelate ring exhibits a bend along the N···P direction of 25.2 (1)°, *i.e.* it adopts an envelope conformation with the metal atom deviating by 0.81(1) Å from the plane defined by atoms N, P, C17 and C18. The structure of (I) can be compared to those previously reported for [Mo(CO)₄{H₂NCH₂- $CH_2N(H)CH_2C_6H_5$] (II) (Shiu, Wang & Liao, 1991), $[Mo(CO)_4 \{ (C_6H_5)_2 PCH_2 CH_2 P(C_6H_5)_2 \}]$ (III) (Bernal, Reisner, Dobson & Dobson, 1986), and [Mo(CO)₄- $\{(C_6H_5)_2CH = CHP(C_6H_5)_2\}$ (IV) (Ueng & Leu, 1991). As a consequence of the distinct *trans* bond-weakening influence of strong σ -donor/ π -acceptor ligands, the two mutually trans carbonyl ligands of all four complexes show longer Mo-C distances [2.012 (3) and 2.041 (3) Å for (I) versus 2.022 (5) and 2.028 (5) Å for (II), 2.030 (9) and 2.053 (9) Å for (III), and 2.022 (5) and 2.038 (5) Å for (IV)] than do the two *trans* to $P(C_6H_5)_2$ [1.986 (2) Å for (I) versus 1.974 (8) and 1.999 (8) Å for (III), and 1.976 (5) and 1.993 (5) Å for (IV)] and NH₂ [1.949 (3) Å

Fig. 1. The structure of the title complex with displacement ellipsoids drawn at the 50% probability level.

for (I) versus 1.953 (4) Å for (II)]. The significant difference in Mo-CO bond lengths observed for the latter two groups of carbonyl ligands is expected, because an NH₂ group is at the *trans* position for the shorter one and is known to be a weaker trans-influencing group than the $P(C_6H_5)_2$ residue which is *trans* to the longer metal-to-carbonyl bonds. The Mo-NH₂ distance in (I), 2.326(2) Å, is close to that reported for compound (II), 2.342 (3) Å, and also to the lengths of the two Mo—NH₂ bonds in fac-[Mo(CO)₃{HN(CH₂- $(CH_2NH_2)_2$], 2.311 (19) and 2.348 (18) Å (Cotton & Wing, 1965). The Mo— $P(C_6H_5)_2$ bond length measured for the title compound, 2.4994 (8) Å, also comparcs favorably with those in both (III), 2.495(2) and 2.500(2) Å, and (IV), 2.494(1) and 2.501(1) Å. The chelate bite angle of (I), $75.70(5)^{\circ}$, is slightly smaller than the N-Mo-N and P-Mo-P angles of the other three tetracarbonyl derivatives [77.0(1)] for (II). 78.58 (4) for (IV) and and 80.2 (1) $^{\circ}$ for (III)].

Experimental

The synthesis of (I) was carried out by reacting [Mo(CO)₆] with *ortho*-(C₆H₅)₂PC₆H₄NH₂ in a 1:1 stoichiometry in refluxing toluene for 2 h. IR (KBr): 1843, 1870, 1910, 2020 [all ν (CO)], 3273, 3317 cm⁻¹ [both ν (NH)]; ¹H NMR (CD₂Cl₂): δ 4.61 (*s*, NH₂); ¹³C NMR (CD₂Cl₂): δ 208.5 [*d*, *cis*-²*J*(P,C) = 8.8 Hz, 2 CO], 217.3 [*d*, *trans*-²*J*(P,C) = 32.3 Hz, 1 CO], 220.8 [*d*, *cis*-²*J*(P,C) = 7.4 Hz, 1 CO]; ³¹P NMR (CD₂Cl₂): δ = 43.8 (*s*). Single crystals were obtained from the CD₂Cl₂ solutions used for NMR measurements.

Crystal data

 $[Mo(CO)_4(C_{18}H_{16}NP)]$ Mo $K\alpha$ radiation $M_r = 485.27$ $\lambda = 0.7107 \text{ Å}$ Triclinic Cell parameters from 26 $P\overline{1}$ reflections a = 9.157(3) Å $\theta = 16-21^{\circ}$ b = 10.815(3) Å $\mu = 0.738 \text{ mm}^{-1}$ c = 10.855 (4) Å T = 293 (2) K $\alpha = 75.78(1)^{\circ}$ Block $\beta = 85.90(1)^{\circ}$ $0.18 \times 0.13 \times 0.13$ mm $\gamma = 84.42(1)^{\circ}$ Bright yellow V = 1035.9 (6) Å³ Z = 2 $D_x = 1.556 \text{ Mg m}^{-3}$ D_m not measured Data collection Philips PW1100 diffrac-

 $R_{\rm int} = 0.078$ tometer (locally updated; $\theta_{\rm max} = 26.04^{\circ}$ $h = -11 \rightarrow 11$ Gomm, 1993) $k = -13 \rightarrow 13$ ω/θ scans Absorption correction: none $l = -13 \rightarrow 13$ 8172 measured reflections 3 standard reflections 4086 independent reflections frequency: 60 min 3680 reflections with intensity decay: <2% $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.058$ S = 1.1294079 reflections 262 parameters H-atom parameters constrained
$$\begin{split} &w = 1/\sigma^2 (F_o^2) \\ &(\Delta/\sigma)_{max} = -0.004 \\ &\Delta\rho_{max} = 0.326 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min} = -0.776 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction: none} \\ &\text{Scattering factors from} \\ & International Tables for \\ & Crystallography (Vol. C) \end{split}$$

Table 1. Selected geometric parameters (Å, °)

Mo-C3	1.949 (3)	Mo—P	2.4994 (8)
Mo-C2	1.986 (2)	01—C1	1.149 (4)
Mo-C1	2.012 (3)	O2—C2	1.151 (3)
Mo-C4	2.041 (3)	O3—C3	1.160 (4)
Mo—N	2.326 (2)	O4C4	1.128 (4)
С3—Мо—С2	88.08 (10)	C3—Mo—P	99.42 (7)
C3—Mo—C1	89.89 (12)	C2-Mo-P	172.24 (6)
C2-Mo-C1	91.33(11)	C1-Mo-P	90.66 (8)
C3—Mo—C4	91.74 (13)	C4MoP	88.72 (8)
C2—Mo—C4	89.08 (11)	N—Mo—P	75.70(5)
C1-Mo-C4	178.33 (11)	Ol-Cl-Mo	178.9 (2)
C3-Mo-N	175.00(7)	O2—C2—Mo	178.3 (3)
C2-Mo-N	.96.75 (8)	O3—C3—Mo	179.2 (2)
C1-Mo-N	91.28 (10)	O4C4Mo	178.6 (3)
C4—Mo—N	87.07 (11)		

All non-H atoms were located by direct methods and subsequent alternate cycles of difference Fourier synthesis and full-matrix least-squares refinement. The final structural model used anisotropic displacement parameters for the non-H atoms. The H atoms were included in geometrically idealized positions employing appropriate riding models with isotropic displacement parameters constrained to $1.2U_{eq}$ of their carrier atoms.

Data collection: local diffractometer software (Gomm, 1993). Cell refinement: local diffractometer software. Data reduction: local diffractometer software. Program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *XP* (Siemens, 1990). Software used to prepare material for publication: *SHELXL*93.

This work was supported by the Fonds der Chemischen Industrie.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1116). Services for accessing these data are described at the back of the journal.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. Bernal, I., Reisner, G. M., Dobson, G. R. & Dobson, C. B. (1986).
- Inorg. Chim. Acta, 121, 199–206.
- Cotton, F. A. & Wing, R. M. (1965). Inorg. Chem. 4, 314-317.
- Dahlenburg, L. & Herbst, K. (1997). Chem. Ber. 130. In the press. Dahlenburg, L., Herbst, K. & Kühnlein, M. (1997). Z. Anorg. Allg.
- *Chem.* **623**, 250–258. Dahlenburg, L., Herbst, K. & Liehr, G. (1997). *Z. Kristallogr.* **212**. In the press.
- Dahlenburg, L. & Kühnlein, M. (1997). Acta Cryst. C53, 1190-1192.

© 1997 International Union of Crystallography

Printed in Great Britain - all rights reserved

- Gomm, M. (1993). Single-Crystal Diffractometry Hardware and Software. IUCr Crystallographic Symposia 6 (Crystallographic Computing), edited by H. D. Flack, L. Párkányi & K. Simon, pp. 1–9. Oxford University Press.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Shiu, K.-B., Wang, S.-L. & Liao, F.-L. (1991). J. Organomet. Chem. 420, 207-215.
- Siemens (1990). XP. Interactive Molecular Graphics Program. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Ueng, C.-H. & Leu, L.-C. (1991). Acta Cryst. C47, 725-728.

Acta Cryst. (1997). C53, 1547-1549

(2,2'-Bipyridine)(flavonolato)copper(II) Perchlorate,† [Cu(bpy)(fla)]ClO₄

István Lippai,^a Gábor Speier,^a Gottfried Huttner^b and László Zsolnai^b

^aDepartment of Organic Chemistry, University of Veszprém, 8201 Veszprém, Hungary, and ^bAnorganisch-Chemisches Institut, Ruprecht-Karls Universität, 69120 Heidelberg, Germany. E-mail: speier@almos.vein.hu

(Received 25 November 1996; accepted 10 April 1997)

Abstract

3-Hydroxyflavone coordinates to Cu^{II} together with the auxiliary ligand 2,2'-bipyridine to form a stable cationic flavonolato-copper(II) complex, [Cu-(C₁₅H₉O₃)(C₁₀H₈N₂)]ClO₄. The complex has distorted square pyramidal geometry. Two O atoms of the flavonol and the N atoms of the chelating bpy ligand are in the basal position, while a perchlorate O atom occupies the apical position.

Comment

Quercetin 2,3-dioxygenase is a Cu^{II}-containing enzyme which catalyses the degradation of quercetin and related compounds into a depside (phenolic carboxylic acid ester) (Westlake, Talbot, Blakely & Simpson, 1959; Takamura & Ito, 1977). Quercetin coordinates to the copper(II) ion and flavonol forms stable Cu^I and Cu^{II} compounds (Speier, Fülöp & Párkányi, 1990; Balogh-Hergovich, Speier & Argay, 1991). Simple flavonolatocopper complexes have been used as model compounds and in model reactions (Utaka, Hojo, Fujii & Takeda, 1984; Utaka & Takeda, 1985). Following this, we report here the molecular structure of a cationic mixed-

[†] Alternative name: $(2,2'-bipyridyl-N,N')(4-oxo-2-phenyl-4H-chrom-en-3-olato-O^3,O^4)copper(II) perchlorate.$